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For many real spin-glass materials, the Edwards-Anderson model with continuous-symmetry spins is more
realistic than the rather better understood Ising variant. In principle, the nature of an occurring spin-glass phase
in such systems might be inferred from an analysis of the zero-temperature properties. Unfortunately, with few
exceptions, the problem of finding ground-state configurations is a nonpolynomial problem computationally,
such that efficient approximation algorithms are called for. Here, we employ the recently developed genetic
embedded matching �GEM� heuristic to investigate the nature of the zero-temperature phase of the bimodal XY
spin glass in two dimensions. We analyze bulk properties such as the asymptotic ground-state energy and the
phase diagram of disorder strength vs disorder concentration. For the case of a symmetric distribution of
ferromagnetic and antiferromagnetic bonds, we find that the ground state of the model is unique up to a global
O�2� rotation of the spins. In particular, there are no extensive degeneracies in this model. The main focus of
this work is on an investigation of the excitation spectrum as probed by changing the boundary conditions.
Using appropriate finite-size scaling techniques, we consistently determine the stiffness of spin and chiral
domain walls and the corresponding fractal dimensions. Most noteworthy, we find that the spin and chiral
channels are characterized by two distinct stiffness exponents and, consequently, the system displays spin-
chirality decoupling at large length scales. Results for the overlap distribution do not support the possibility of
a multitude of thermodynamic pure states.
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I. INTRODUCTION

The discovery of materials without magnetic ordering
down to zero temperature, but with an unusual cusp in the
nonlinear magnetic susceptibility1 indicating a transition to a
magnetically frozen but random state, has prompted a theo-
retical effort spanning over 30 years and aimed at the under-
standing of the perplexing properties of these spin-glass
systems.2–5 Albeit mostly driven by the theoreticians’ hope to
understand the peculiar behavior of such systems within the
framework of statistical mechanics, the results of this re-
search have found widespread application in seemingly
rather distant fields such as the theory of associative
memory,6 models of the immune system,7 or error correcting
codes.8,9 Spin-glass science thus provides for a classical ex-
ample of how research driven by curiosity rather than appli-
cation can lead to unexpected progress in diverse research
areas. The canonical case of a spin glass, i.e., a noble metal
host doped with magnetic transition metal ions2 is not of
particular interest as a material apart from the peculiarity of
its properties. In recent years, however, many new materials
with possible spin-glass phases have been discovered in
compounds with highly frustrating lattice structures.10 The
large degeneracy of the ground state arising from geometric
frustration alone gives rise to a host of novel and exotic
magnetic phases, including spin glasses,11 but also spin
liquids12,13 and spin ices.14 Experimental evidence suggests
that spin-glass-like phenomena appear to lie at the heart of
several �potentially� technologically important phenomena,

such as high temperature superconductivity, colossal magne-
toresistance, and the anomalous Hall effect.

Other than might be suspected from the pure volume of
published research in the field,2,5 however, owed to the un-
wieldy nature of the problem, even some very basic ques-
tions such as the existence of a finite-temperature phase tran-
sition have in general remained unanswered to date.5 Starting
from the, by now, rather complete15 understanding of the
unusually complex mean-field theory16–18 of the fully con-
nected �infinite dimensional� Sherrington-Kirkpatrick19 �SK�
model, recent research has focused on the case of finite-
dimensional systems. For the nearest-neighbor O�n�
Edwards-Anderson �EA� model20 with Hamiltonian

H = − �
�ij�

Jij Si · S j , �1�

which has been studied in detail, most of the effort has been
devoted to the discrete case of classical Ising spins �n=1�.
Even for this simplest case some controversial questions,
such as the existence of a glassy phase at non-zero tempera-
tures in three dimensions �3D�, could only be definitely an-
swered in very recent years.5 In general, many features such
as the generic structure of valleys and barriers in the free
energy and, more generally, the question of whether spin
glasses in finite dimensions behave essentially alike or dif-
ferently from the mean-field case remain poorly
understood.21,22 Even the allegedly simplest case of the Ising
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spin glass in two dimensions �2D� remains a topic of lively
research activity.23–27

For most of the materials featuring glassy magnetic
phases, however, continuous XY or Heisenberg spins cer-
tainly are a more accurate description than the Ising model of
extreme anisotropy in spin space.2,3,11 From the perspective
of condensed matter physics, much attention has been paid to
the experimentally important case of weak but frustrating
impurities and the question of a resulting loss of collinear
order. Isolated frustrating antiferromagnetic defects in an
otherwise ferromagnetic system couple to each other via an
effective dipolar interaction,28,29 but it remains an open ques-
tion whether collinear order can be destroyed with an arbi-
trarily small concentration of sufficiently strong defect
bonds, and what role is played by the spatial dimension.30–33

Such models are potentially relevant to the weakly doped
copper-oxide parents of high-Tc superconductors,33–35 while
periodically frustrated XY systems are models of Josephson
junction arrays.31,36–38 For the strong disorder case of a spin
glass with symmetric bond distribution, the question of
whether there is a finite transition temperature �for either or
both of the spin and chiral sectors� in 3D XY and Heisenberg
EA models is currently �again� hotly debated.39–44

For the SK model, the ordered phase is characterized by a
breaking of the abstract replica symmetry,45 but the nature of
symmetry breaking in the short range case is less clear. Start-
ing out from an essential analogy with the behavior of the
ferromagnet, a phenomenological droplet scaling theory for
the effective coupling in spin glasses has been
formulated.46–50 The surface �free� energy of droplet excita-
tions of length L is assumed to scale as �E�L�s, defining
the spin stiffness exponent �s. Put into the context of a renor-
malization group �RG� framework,49 �s determines whether a
system scales to weak coupling ��s�0� such that droplets
can always destabilize the ordered phase, thus restricting its
extension to zero temperature, or scales towards strong cou-
pling ��s�0� such that large-scale excitations are sufficiently
costly to allow for a stable spin-glass phase at non-zero tem-
peratures 0�T�TSG. In the infinite-range SK model, the
notion of droplets is maldefined and, instead, it is found that
excitations of arbitrary size can be invoked at constant
energy.16–18,45 Consequently, if mean-field theory applies to
low-dimensional spin glasses, low-energy excitations are of
rather different nature implying, for instance, space filling
domain walls.21 Hence an analysis of overlaps between
ground and systematically excited states can in principle al-
low one to distinguish between the droplet and mean-field
pictures.51,52 A standard way of producing excitations is a
change of boundary conditions �BCs�, e.g., from periodic to
antiperiodic, the energy difference between both configura-
tions capturing the energy of a relative domain wall.46,53

For the 2D Ising spin glass, domain-wall energies scale
with �s=−0.287�4� for Gaussian bond distribution54 and �s
=0 for bimodal couplings,55 and a true thermodynamic spin-
glass phase occurs only at zero temperature in both cases.
From the RG ansatz of Ref. 49, �s determines the divergence
of the correlation length � as T→0 via �=−1 /�s, which is
found to be consistent with finite-temperature Monte Carlo
results for the Gaussian case.23,56 For the bimodal �J distri-
bution, on the other hand, the formal �=	 has been inter-

preted as exponential divergence25 of �, but some evidence
for an algebraic singularity has also been presented
recently26 �see also Ref. 57�. For the case of continuous XY
or Heisenberg spins, the situation is complicated by the fact
that the noncollinear spin structure in the ordered phase al-
lows for the distinction of proper and improper O�n� trans-
formations, such that the continuous SO�n� rotational sym-
metry is augmented by a Z2 or Ising-like chiral symmetry
related to the determinant of the O�n� rotation matrix.58 It
has been argued59 that these chiral degrees-of-freedom might
decouple from the rotational ordering, resulting in different
transition temperatures �above the lower critical dimension�
or, at least, an additional chiral stiffness exponent �c �for
TSG=0�. Such a scenario is—after a long-winded debate—
now quite well-established in some periodically frustrated
magnets60–62 but remains fervently debated for the case of
spin glasses.39,41,42,44,63 For the 2D XY spin glass, neither has
�s been determined consistently, with estimates ranging
from64 �s=−1.0 to65 �s=−0.4, nor has the question of a
possible spin-chirality decoupling been satisfactorily
resolved.65,66

Methodologically, the above uncertainties regarding the
XY spin glass are related to various technical difficulties.
First, finding ground states of spin-glass model systems is a
computationally hard problem, generically believed to re-
quire an effort growing exponentially with system size.67 The
2D Ising spin glass on planar graphs is the only nontrivial
exception to this rule, being polynomial computationally,68

and allowing for the rather precise estimate of �s cited above.
Thus reliable spin-glass ground state computations depend in
general on rather elaborate and specifically tailored approxi-
mation algorithms to treat reasonably sized systems. In this
context, we use here the recently proposed “genetic embed-
ded matching” �GEM� technique69,70 to investigate the zero-
temperature properties of the 2D XY spin-glass model. For
the Ising problem mentioned, due to the existence of rather
pronounced finite-size effects71 relatively large system sizes
turned out to be necessary for reliable estimates, e.g., of �s.
Below, we will see how progress in accessing much larger
system sizes using the GEM approach now allows for inves-
tigations where finite-size effects seem rather well-
controlled. Second, there is no full agreement as to how BCs
should be chosen in order to precisely excite either spin or
chiral defects.65,72 This is of particular concern here, given
that strong corrections to scaling depending on the chosen set
of BCs have been observed for the Ising case.54,73 Here, we
systematically study a wide range of BCs and resolve the
boundary dependent corrections to scaling.

The rest of the paper is organized as follows. Section II
briefly discusses the employed GEM technique and the tech-
nical setup of the calculations. In Sec. III, we discuss the
asymptotic ground-state energy and the spectrum of meta-
stable states found in the GEM calculations, while Sec. IV
reports on the properties of excitations induced by a change
of BCs. In particular, spin and chiral stiffness exponents and
the associated fractal dimensions of domain walls are deter-
mined. Some of these results already were reported in part in
Ref. 69. Section V contains our results for the scaling of
overlap distributions, and Sec. VI presents some results on
the distribution of internal fields and the disorder strength vs
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disorder concentration phase diagram of the 2D randomly
frustrated XY magnet. Finally, Sec. VII contains our conclu-
sions.

II. ALGORITHM AND TECHNICAL SETUP

Zero-temperature properties might be inferred from the
T→0 limit of finite-temperature calculations such as Monte
Carlo simulations. The latter, however, suffer from severe
slowing down as the T=0 critical point is approached for this
system, thus rendering the extrapolated results rather unreli-
able. Hence we chose, instead, to determine ground states
directly from nonequilibrium methods. Apart from the 2D
Ising EA model on planar graphs, such computations are
believed �and in some cases proven� to be NP hard74 optimi-
zation problems.67 To make progress with the 2D XY model,
we take inspiration from the approach making the 2D Ising
EA model solvable.68 In particular, we embed Ising variables
into the continuous XY spins: with respect to a random, but
fixed direction r in spin space, the O�n� spins Si of Eq. �1�
decompose as Si=Si

� +Si
�= �Si ·r�r+Si

�. This results in a de-
composition of H as H=Hr,� +Hr,� with

Hr,� = − �
�i,j�

J̃ij
r 
i

r
 j
r, �2�

where 
i
r=sign�Si ·r�, and where the effective couplings J̃ij

r

are given by

J̃ij
r = Jij�Si · r��S j · r� . �3�

If now the original O�n� rotations of the spins are restricted

to reflections along the plane defined by r, J̃ij
r as well as Hr,�

are easily seen to be invariant under such reflections of indi-
vidual spins, whereas the 
i

r change sign. Hence, for a given
r, Hr,� in Eq. �2� takes on the form of an Ising model with
effective Ising “spins” 
i

r.
The tractability of the 2D Ising ground-state problem in

polynomial time comes about via the transformation to a
graph-theoretical formulation.68 It rests on a dualization of
the model: define elementary plaquettes of the square lattices
to be frustrated if one or three of their surrounding bonds are
antiferromagnetic.75 For a given spin configuration, mark
dual bonds of the square lattice as “active” if the correspond-
ing original bond is unsatisfied, i.e., if JijSiSj �0. Then, from
the very definition of a frustrated plaquette, the set of “ac-
tive” �dual� bonds consists of individual chains which are
either closed loops or open chains connecting pairs of frus-
trated plaquettes, and the total energy of H in Eq. �1� is �up
to a constant� identical to the total sum of Jij along the “ac-
tive” bonds. Since on a planar lattice closed loops can always
be removed by contraction, a ground state of the spin system
corresponds to a minimum-weight perfect matching of the
frustrated plaquettes, i.e., a configuration of the active bonds
matching up all pairs of frustrated plaquettes while minimiz-
ing the total weight �Jij of bonds contained. Such problems
can be solved in polynomial time by means of Edmonds’
“blossom algorithm,”76 and, most importantly, the solution
can be shown to always correspond to a valid spin configu-
ration for the case of planar graphs.68 As a result, application

of �anti-�periodic BCs is restricted to at most one direction to
preserve planarity. See Refs. 67, 68, and 70 for a more de-
tailed account of the relation between the Ising ground state
and graph-theoretical matching problems.

Using the decomposition �2� for the O�n� Hamiltonian
�1�, the blossom algorithm can be used to find exact ground
states of the embedded Ising spins 
i

r, corresponding to a
reflection of some of the continuous spins with respect to the
plane defined by a randomly chosen direction r. A random
sequential sampling of directions r is used to statistically
recover the full O�n� symmetry. This embedded matching
procedure is a strictly downhill search which, however, due
to its nonlocal nature originating from the exact ground-state
computation for the embedded Ising spins, features far less
metastable states than a zero-temperature quench with any
local dynamics.77 Due to the dependence of the effective

couplings J̃ij
r of Eq. �3� on the configuration 	Si
, the embed-

ded matching dynamics normally drives the system into a
�low-lying� metastable state instead of the true ground state.

To find true ground states, the above embedded matching
must be supplemented by a complementary protocol. We do
so by inserting the embedded matching �i.e., minimization
technique� as an optimization component �subroutine� into a
specially tailored genetic algorithm.69,78 Here, a whole popu-
lation of candidate ground state configurations is being
worked on, continuously undergoing an improvement pro-
cess mimicking natural evolution, which allows for a very
efficient exploration of the landscape of metastable states of
the system.

�1� Crossover. A random pair of spin configurations is
selected as “parent configurations” and locally rigid domains
or clusters are exchanged at random between them to pro-
duce “offspring” �see also Sec. III B�.

�2� Mutation. A small proportion of spins of either off-
spring are randomly perturbed.

�3� Optimization. Both offspring are optimized using the
embedded matching technique.

�4� Selection. Each parent is replaced by the morphologi-
cally closer offspring in case the latter has a lower internal
energy.

The most crucial step in this sequence is the “crossover”
operation. Indeed, special attention must be paid to the way
configurations are combined in the crossover to balance the
need for “genetic” diversification with the preservation of the
high optimization on short length scales already achieved at
intermediate steps of the process. Statistical analyses show
that the above combination of techniques in this genetic em-
bedded matching �GEM� approach allows for a reliable de-
termination of ground states for 2D XY spin glass samples of
up to about 30�30 spins with current computing
resources.79 The algorithmic details of the GEM technique
are quite intricate. A presentation of those details here would
detract from our main agenda, which is to focus, and report,
on the physical properties of the ground state of the 2D XY
spin glass. A full account of the algorithmic details of the
GEM technique can be found in Ref. 70.

For specificity, we assume a bimodal distribution of the
quenched random couplings Jij of Eq. �1�,
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P�Jij� = �1 − x���Jij − J� + x��Jij + 
J� , �4�

where 
 denotes the relative strength of the antiferromag-
netic impurity bonds Jij =−
J and x their concentration. Un-
less stated otherwise, we averaged with respect to the distri-
bution �4� by taking 5000 independent disorder realizations
and concentrated on the symmetric point x=0.5, 
=1, deep
in the spin-glass regime of model �1� with P�Jij� from Eq.
�4�. All computations discussed below were performed on
square lattices. Choosing the parameters of the GEM runs to
arrive at true ground states with high reliability, the run times
for single ground-state computations on a single 2.8 GHz
Pentium IV CPU are between a few seconds for the smallest
lattice sizes up to about 8 h for a 28�28 system. In total,
production of the data presented here consumed the equiva-
lent of about 80 years of single CPU time.

III. ENERGETIC PROPERTIES

A. Asymptotic ground-state energy

To determine the asymptotic ground-state energy, we per-
formed a finite-size scaling analysis using systems of differ-
ent BCs, namely open and open-periodic �as mentioned
above, fully periodic boundaries are not accessible to the
method due to the planarity constraint68�. We used L�L sys-
tems with linear dimensions L=6, 8, 10, 12, 16, 20, 24, and
28 and with 5000 disorder replica for each system size. We
consider the average, size-dependent internal energy per
spin, e�L�= �E /N0�J, where �·�J denotes a disorder average
and N0 is the number of lattice sites. From generic finite-size
scaling arguments,80 at a T=0 critical point, e�L� should
scale as81

e�L� − e	 � L−�d−�s�, �5�

where d denotes the spatial dimension and �s=−1 /� was
assumed.49 As usual, corrections to this form can be either
nonanalytic, stemming from irrelevant operators, or analytic
and proportional to L−k, k=1,2 , . . ., from nonlinear scaling
fields.82 From the 
-expansion of the Ising spin glass, the
leading nonanalytic correction is �to first order in 
=6−d�
found81 to be proportional to L�s−6, asymptotically clearly
smaller than the leading analytic correction term. Assuming a
similar behavior for continuous spins, we shall restrict our-
selves to analytical corrections here. Then, the most general
form would be

e�L� − e	 = AL−�d−�s� + BL−1 + CL−2 + DL−3 + ¯ . �6�

We first consider the case of fully open boundaries. Noting
that in this case the analytical corrections can be at least
partly attributed to the presence of edges and corners �cf.,
e.g., Ref. 83�, Campbell et al.81 take a slightly different ap-
proach and, instead of using e�L�, consider the energy
ebd�L� /2 per bond as the fundamental property, making the
following scaling ansatz:

ebd�L� − e	
bd = B*/L + C*/L2, �7�

with B* representing edge effects and C* accounting for cor-
ner corrections. No term proportional to L−�d−�s� is included

in Eq. �7� arguing that free boundaries do not force any do-
main walls into the system. Indeed, excellent agreement with
the data is found under this assumption for the case of the
Ising spin glass.81 Since Le�L�= �L−1�ebd�L�, the parameters
of Eqs. �6� and �7� are related as e	=e	

bd, B=B*−e	
bd, C

=C*−B*, D=−C*, and A=0. Note that this effectively re-
duces the number of fit parameters of the form �6� with A
=0 from four to three, the 1 /L3 term merely being produced
from the 1 /L2 correction of Eq. �7� by the transformation
from bonds to sites. A fit of the form �6� with A=0 to our
data for free boundaries yields e	=−1.5520�14� with good
quality-of-fit Q=0.35. Using B* and C* as free parameters,
on the other hand, yields a very similar estimate e	=
−1.553 31�56� with Q=0.48. This last fit is shown together
with the data in the upper panel of Fig. 1. It is interesting to
note that the resulting parameter estimates B*=−0.375�17�
and C*=0.059�98� are in fact rather close to the values B*

=−0.3205�9� and C*=0.042�3� found for the Gaussian 2D
Ising case and much further away from the estimates B*=
−0.5492�20� and C*=0.506�18� for the bimodal Ising spin
glass.81 This is consistent with the expectation that the con-
tinuity of the XY spins effectively smooths out the discrete
bimodal distribution of couplings Jij as far as energetic de-
fects are concerned.

For �mixed� open-periodic boundaries there is no reason
to exclude an L−�d−�s� term related to domain-wall trapping.
In the scaling ansatz �7� for the bond energies, the 1 /L2

correction should be omitted since the system has no corners,

6 10 16 28
L
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e D
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(L
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FIG. 1. �Color online� Top: Average ground-state energy per site
for open-open and open-periodic boundaries. The fits are described
in the main text, and the horizontal line shows the estimated
asymptotic value of e	=1.553 31. Bottom: Domain-wall related
correction to the internal energy for open-periodic BCs, which we
denote by eDW�L�, and which is given by eDW�L�=e�L�−e	− �B*

−e	
bd� / �2L�+B* / �4L2�. Here, the open-boundary estimates e	

=1.553 31 and B*=−0.375 have been used. The line shows a fit of
the form eDW�L�=AL−�d−�s�, yielding an estimate �s=−0.432�94�.
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and the edge contribution should be cut in half. Since now
2Le�L�= �2L−1�ebd�L�, one identifies B= �B*−e	

bd� /2 and C
=−B* /4. The statistical precision of the data is not sufficient
to perform an unrestricted fit of the general form �6�. Fixing
C=D=0 with the four unrestricted parameters e	, A, �s, and
B remaining, we arrive at e	=−1.552 5�13�, �s=−0.49�69�,
and Q=0.35. Fixing only D=0, but reducing the number of
parameters to four again by using the parametrization with
B* and C* yields a rather similar estimate e	=−1.552 9�13�,
�s=−0.59�77�, and Q=0.40. Using the estimates e	=
−1.553 31�56� and B*=−0.375�17� from the open-boundary
case to reduce the number of parameters to two, on the other
hand, yields a good fit �Q=0.38� with a much more precise
estimate �s=−0.432�94� �note, however, that the quoted sta-
tistical error does not take the uncertainty in the fixed param-
eters e	 and B* into account�. This fit is displayed together
with the data in the upper panel of Fig. 1. The lower panel
shows the domain-wall related part eDW�L� of the energy
correction for the open-periodic case. As is clearly seen, the
domain-wall contribution is a very small correction to the
internal energy. The estimate for �s is compatible with the
result found from the domain-wall calculations for periodic
BCs at fixed aspect ratio R=1 presented below in Sec. IV,
but too large in modulus compared to our final estimate from
the aspect-ratio scaling. One interesting question is whether
spin and/or chiral defects should contribute to the domain-
wall correction to the internal energy. We will show below in
Sec. IV that the chiral defects are of much lower absolute
energy for the considered lattice sizes than the spin defects,
such that essentially only the spin defects are at play here,
justifying post factum the interpretation of �s as the spin-
stiffness exponent. Our best estimate for the asymptotic
ground-state energy, e	=−1.553 31�56�, should be compared
with the value e	=−1.401 97�2� of the bimodal 2D Ising
spin glass81 which is, perhaps surprisingly, only about 10%
higher. Hence the enhanced ability of the continuous model
compared to the discrete Ising case to locally adapt does not
allow it to substantially relieve the frustration imposed by the
bond disorder �the unfrustrated system yielding, of course,
e	=−2�.

B. Spectrum of metastable states

While a finely tuned choice of parameters in the GEM
approach guarantees high reliability for the optimization to
arrive at a ground state, less optimal settings �in particular a
reduction of the initial population size below a certain
threshold� result in runs converging to low-lying metastable
states instead.69,70 Additionally, and irrespective of the pa-
rameter choice, a part of the spectrum of low-lying meta-
stable states appears as intermediate population members in
the course of the optimization procedure. For a finite system
this spectrum appears discrete84 �see below�, and one natu-
rally wonders what the nature of these excitations is. Com-
paring the configurations of some of these states, it is clearly
seen that on short length scales the system is rigid within the
space of energy minima, i.e., it naturally decomposes into
stiff clusters of solidary spins whose individual moments
have very similar orientations in all of the low-lying meta-

stable states, apart from relative, almost exact O�n� rotations
of whole clusters. Indications of such rigid clusters have
been found in previous studies of Ising68,85 and continuous-
spin systems.66,86,87 However, the genuine existence of such
clusters for continuous spins had so far not been as well-
established numerically as we are able to achieve here with
the GEM method. Note that such clusters are the finite-
energy analog of the “backbone” or “rigid lattice” of sites
with constant relative spin orientation in all ground states
observed in the �J Ising spin glass with a large ground-state
degeneracy.88 The GEM approach, and ultimately, its ability
to determine the ground states, heavily relies on this cluster
structure in the choice of operation for the crossover proce-
dure exchanging such rigid domains between the “parent”
replica, cf. the discussion in Sec. II and Ref. 70. As a result,
the GEM algorithm effectively operates directly on the space
of metastable states instead of on the whole of the continu-
ous phase space.70 Products of independent O�n� transforma-
tions of adjacent clusters �plus local excitations close to the
boundaries between clusters� correspond to the domain-wall
or droplet excitations postulated by the droplet theory of the
spin-glass phase48–50 and directly observed in Ising spin
glasses.50,55,71 Finally, from the perspective of defect theory,
the continuous symmetry of the order parameter also allows
for topological excitations, here, according to the homotopy
groups of O�2�, realized as domain walls and vortex
excitations.89 These can be explicitly observed in
configurations,70,86 contributing to the thus rather rich variety
of excitations appearing in this system.

Although a multitude of states with energies just slightly
above the ground state �with, e.g., �E /E as low as �10−6 for
some 16�16 systems� is found, these energy differences are
still far above the numerical resolution limits, and the con-
figurations can be shown for each case to be truly different
�see, for instance, the state differences depicted in Fig. 2�.
Naturally, each of these states has an �O�n�� degeneracy cor-
responding to a global �proper or improper� rotation of all
spins. Conversely, however, we checked for additional non-
trivial degeneracies and found that statistically independent
GEM runs always converged to an O�n� rotated copy of the
same state. Hence the ground state of the system appears
unique modulo the global symmetry. Consequently, quanti-
ties related to statistical fluctuations vanish at T=0 and �, the
exponent of the correlation function, is equal to zero.49 In
terms of the clusters of rigid spins observed, the unique
ground state results from the fact that the rigid clusters are
not free, but their rigid O�n� rotations have some nonvanish-
ing excitation energy from necessary local adaptations of
boundary spins.

By design, the GEM approach does not explicitly find all
states of a given energy. In particular, as a nonequilibrium
technique it does not find states with probabilities corre-
sponding to their respective Boltzmann weights. However,
there is no reason to believe that in all cases a single of
possibly a multitude of degenerate ground states would
dominate so strongly that not a single degenerate state ap-
pears in the thousands of independent runs undertaken. In
contrast, the combined binary symmetry of the bimodal Ising
spin glass results in a massive degeneracy of the ground
state,68 such that already a typical 10�10 system has be-
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tween 104 and 106 ground states.90 Monte Carlo
simulations64,91 and Migdal-Kadanoff RG calculations92

have led to speculations that the pairing of bimodal cou-
plings with the discrete chiral symmetry might give rise to a
similar situation in the bimodal XY spin-glass model consid-
ered here. Certainly, if calculations such as finite-temperature

Monte Carlo simulations are sensitive to a �possibly narrow�
range of energies, the observed dense spectrum of states
might effectively appear as quasidegenerate, resulting in
an erroneously nonzero estimate of � from such
simulations.64,91 Also, one might speculate about degenera-
cies in excited states which we have not investigated here,
but might have shown up in some of the previous studies.

The low-lying metastable states appearing in the process
of a GEM run might allow one to learn something about the
spectral properties of the system. Assuming a unique leading
exponent in the scaling of defect energies with length scale,
it is interesting to see how the lowest-energy excitations cor-
responding to the gap relate to the domain-wall or droplet
excitations that are crucial for the understanding of the spin-
glass phase. In Fig. 3 we show the gap energies for a series
of L�6L systems with open-periodic BCs �the nontrivial
aspect ratio is chosen to reduce corrections to scaling, see the
discussion below in Sec. IV�. A fit of the functional form
��Egap�J�L�gap to the data for L�5 yields an estimate of
�gap=−1.447�31�. Thus the energy gap closes rather rapidly,
leading to the expected quasicontinuous spectrum of meta-
stable states in the thermodynamic limit. Also, �gap is clearly
far more negative than the estimate �s�−0.3 of the spin-
stiffness exponent found below in Sec. IV from the domain-
wall energy scaling. In fact, the energies of domain walls
induced by a change from periodic to antiperiodic bound-
aries, additionally shown in Fig. 3 for comparison, are much
larger than the gap energies for the whole range of system
sizes considered. It is thus clear �at least as far as the range of
available finite lattice sizes allows one to judge� that the
excitations reflected in the gap scaling are not in general
extended defects of the domain-wall type. If, as argued here,
metastable states are related to the ground state by rigid O�n�
rotations of one or several clusters �plus certain local adap-
tations at the cluster boundaries�, it appears that the gapped
excitations correspond to rotations of single �or few� such
clusters, resulting in a lower excess energy than observed
from the larger number of clusters that recombine to form a
domain-wall defect. This view is corroborated by the snap-
shots of defects corresponding to the differences between
ground and first excited states depicted in Fig. 2. Besides the
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FIG. 2. �Color online� Local rotation matrices between the
ground and first excited states for two 28�28 disorder realizations
with open-periodic boundaries �periodic boundaries in the vertical
direction�. The arrows indicate the rotation angles, and blue squares
are drawn in the case of improper rotations, i.e., negative determi-
nant of the O�2� matrix. See below in Sec. V for details about how
these matrices are computed. The relative excitation energies are
�E /E�1.5�10−5 �upper configuration� and �E /E�2.4�10−6

�lower configuration�, respectively.
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FIG. 3. �Color online� Scaling of the energy gap between
ground state and lowest excited metastable state as estimated from
the GEM approach for L�6L systems with open-periodic BCs. The
line shows a fit of the form ��Egap�J�L�gap to the data. For com-
parison, the upper data set shows the average energy of domain
walls induced by a change from periodic to antiperiodic BCs.
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extended defects with sizes of order L which might as well
be incurred by a change of BCs �upper panel in Fig. 2�, in
many cases much more localized defects, corresponding to
single rigidly O�n� rotated clusters, are the lowest excitations
�lower panel in Fig. 2�. These two situations �represented by
the upper and lower panels of Fig. 2� allow us to interpret the
rapid drop of gap energies indicated by the estimate of �gap
as the effect of an additional implicit condition of minimum
energy. For a given disorder configuration, �Egap is not the
average energy cost incurred by the O�n� rotation of a single
cluster, but the minimum cost of all possible such rotations
of clusters. Finally, it should be noted that �Egap is naturally
not confined to either spin or chiral58,59 sectors, such that
depending on the disorder configuration spin or chiral de-
fects make up the gapped excitation.

IV. DOMAIN WALLS

For a systematic determination of the spin and chiral stiff-
ness exponents �s and �c, respectively, a controlled and di-
rect insertion of the corresponding defects into the system is
needed. This is most conveniently achieved by using an ap-
propriate choice of BCs. Droplet excitations could be created
by similar means,71,93 but we have not explored this yet.

A. Choice and implementation of boundary conditions

For the Ising spin glass, defect energies are carried by
domain walls or droplet surfaces which are the sharply local-
ized boundaries of regions of inverted spins. For continuous
symmetry, the notion of defects is more subtle since the spin
direction varies smoothly, whereas chiralities are of the Ising
type with localized boundaries �cf. Fig. 2�. This is also seen
in the types of topological defects allowed by the O�n� sym-
metry, namely plain domain walls for the Ising case, but
chiral domain walls and vortices for XY spins.86,87,89 The
classic approach of measuring defect energies has been to
analyze the difference between the energies EP and EAP of
systems with periodic �P� and antiperiodic �AP� BCs.53 In
contrast to a ferromagnet, however, both P and AP bound-
aries are in general frustrating for a spin glass such that,
compared to the thermodynamic state, in a finite system do-
main walls or other defects are forced into the system. It is
therefore not quite obvious what kind of excitation energy
the difference �EP/AP actually corresponds to. For the Ising
case, the difference or sum of two domain-wall excitations is
still essentially a linear excitation of length L, so one might
expect to observe the scaling ��E�P/AP�L�s predicted by
droplet theory,48,49 which in fact turns out to work reasonably
well for sufficiently large system sizes.5 The continuous case
with spin and chiral variables is less straightforward: the
mere periodicity of periodic or antiperiodic BCs alone might
force either spin or chiral excitations into the system, such
that the interpretation of the difference ��E�P/AP is rather un-
clear. While previously only P/AP boundaries �and the cor-
responding “reflective” boundaries for chiral defects� had
been considered,66,94,95 Kosterlitz and Akino65 suggested to
alleviate the problem of trapped defects by additionally op-
timizing over a global twist angle along the boundary and

comparing the resulting configuration to one with a relatively
� rotated or reflective boundary �“optimum twist” method�.
While such extra optimization over a global twist minimizes
the frustrating effect of periodicity, it does not remove it, and
hence spin and chiral defects remain incompletely disen-
tangled.

A less ambiguous setup results from comparing the unre-
stricted, open-boundary system with the case of an explicitly
inserted defect. We refer to this approach as open �O� and
domain-wall �DW� BCs.55 The DW boundaries could be re-
alized by fixing the spins along one of the two boundary
seams under consideration in the positions of the O ground
state and the spins of the other seam in a configuration ro-
tated by � compared to the O state to induce a spin domain
wall, cf., the sketch in Fig. 4. A fixing of spins is not possible
within the GEM approach, however, since the spins do not
have a direct representation in the dual matching problem.
Instead, we link the boundary seams periodically with strong
“anisotropic bonds” guaranteeing a fixed relative orientation
of spins. In the embedded matching approach, for a pair
�S� ,S�� of spins linked across the boundary, we choose an
effective coupling

J̃��
r = Jstrong
̂�

r 
̂�
r �8�

instead of the general embedded coupling �3�. Here, 
̂�
r

=sign�Ŝ�� ·r�, Ŝ�� =RŜ�. The pair �Ŝ� , Ŝ�� denotes the in-
tended final relative orientation of �S� ,S��, i.e., in terms of
the angles �, S= �cos � , sin ��, we have

�̂� − �̂� = �� − �� + � for a spin DW,
�9�

�̂� − �̂� = �� + �� for a chiral DW.

Here, R denotes a rigid rotation of the pair �Ŝ� , Ŝ�� such that

Ŝ�=S�. In this way, any relative orientation �Ŝ� , Ŝ�� can be
forced upon the system by choosing a �nonrandom� Jstrong
�max�Jij�, such that a Jstrong bond is never broken in an
embedded matching run �for our computations, we chose

FIG. 4. �Color online� Open and domain-wall BCs. A ground
state for open boundaries is determined, resulting in some configu-
ration of the boundary spins �left�. For spin domain-wall bound-
aries, the spins along the right boundary are then rotated by � and
all boundary spins are held fixed for a second ground-state compu-
tation �right�. In the actual implementation used, instead of locking
the boundary spins, only their relative orientation is fixed.
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Jstrong=105�. The resulting excess contribution of the Jstrong
bonds is, of course, not counted in the final energy. For snap-
shots of excitations incurred by these O /DW spin and chiral
boundaries, see Ref. 96. The prescription �9� for the chiral
DW boundaries corresponds to a fixed axis of reflection in-
dependent of the disorder configuration �depending on the
choice of origin for the angles �i�. As an alternative, we have
also considered a minimization procedure for the choice of
the reflection axis. In particular, we chose the reflection axis
perpendicular to the average direction of the boundary spins
in order to minimize the boundary perturbation. We found
very similar results to the case of the prescription of Eq. �9�,
such that it appears that this ambiguity does not have any
bearing on the resulting value of the chiral stiffness expo-
nent. For completeness, we also considered the standard
P/AP BCs pair as well as the random �R� and antirandom
�AR� BCs pair, where the spins are fixed in random relative
orientations using the procedure described above for the R
computation and in relatively � rotated orientations for the
computations with AR BCs.

B. Spin and chiral stiffness

We have computed defect energies for L=6 up to L=28
systems with P/AP, R/AR, and O /DW spin and chiral com-
binations of BCs. The results are collected in Fig. 5 together
with fits of the form ���E��J�L� to the data. Alternatively,
one might consider the scaling of the width ��E�
=����E− ��E�J�2�J, which leads to very similar results, and
the final estimates of this approach will be discussed below.
For the P/AP combination, a pronounced crossover is ob-
served from the sizes L�12 with �s=−0.724�21� to �s=
−0.433�26� for L�16. L=12 was about the maximum size
considered in previous studies,65,66 and our estimate for L
�12 is indeed consistent with these previous results as illus-
trated by the P/AP data of Ref. 65 shown for comparison.
The result for L�16, on the other hand, is much smaller in
modulus and close to the value of �s�−0.4 resulting from
the “optimum twist” prescription of Ref. 65, indicating that it

indeed reduces finite-size corrections to scaling. We note that
the apparent crossover length L�12 is comparable to the
length below which no metastability occurs and the system
behaves like a spherical spin glass.94,97 The scaling of defect
energies for the R/AR combination of boundaries behaves
quite similar to the P/AP case �as they are still periodic in
nature�, resulting in �s=−0.519�30� for somewhat smaller
systems. The O /DW setup, on the other hand, not hampered
by the periodicity effect, yields an even less negative esti-
mate �s=−0.207�12�. Finally, for the chiral defects, we find
�c=−0.090�23�.

As is seen from the variation of estimates with system
size as well as between BCs, corrections to scaling are
strong. A very similar situation occurs for the Ising spin
glass.54 On general grounds,80 we expect analytic and
nonanalytic finite-size scaling corrections,

���E��J�L� = AL��1 + BL−�� + C/L + D/L2 + ¯ . �10�

In contrast to the scaling �6� of the internal energy, where the
edge and corner effects were important, the dominant term is
here given by the nonanalytic correction which is connected
to interactions as well as self-interactions of domain walls.71

Due to the limited precision of the data, we have to set C
=D=0. We find that only for the P/AP case are corrections
pronounced enough and a sufficient number of system sizes
is available for a stable fit that includes a nonanalytic L−�

correction term. For this case �including all data points L
=6, . . . ,28�, we arrive at �s=−0.18�27�, �=1.21�28� with
Q=0.43 �cf. the dashed black curve in Fig. 5�, whereas a fit
including all data without the correction term �i.e., addition-
ally setting B=0� yields an unacceptable quality-of-fit Q=6
�10−16. Hence, including corrections to scaling seems, in
principle, able to reconcile the data from different sets of
boundaries. However, this can only be done at the expense of
mounting statistical uncertainties which cannot be afforded
for useful estimates with the available level of accuracy and
range of system sizes.

As an alternative systematic treatment of scaling correc-
tions for domain-wall calculations, it has been suggested to
consider L�M systems with variable aspect ratios R

M /L �with the change of BCs occurring along the edges of
length L�.73 In general, scaling depends on the aspect ratio,80

so we can write

���E��J�L� = L�F�R� , �11�

with some scaling function F�R�. In the extreme case of very
elongated systems, R→	, one should approach the behavior
of the one-dimensional �1D� system. For the 1D Ising model,
it is found that ���E��J�L��1 /M independent of BCs.49 For
the XY symmetry, the situation is more involved due to the
simultaneous presence of spin and chiral variables. It appears
that there are distinct exponents �= �d−2�=−1 related to spin
waves and ��−1.9 related to chiral excitations for the
�quasi� one-dimensional XY spin glass.72,98 We are not
aware, however, of any tests of universality with respect to
different BCs probing the same excitations in this model.
However, it is clear that the influence of the boundaries must
diminish for R�1 as the average distance to the boundaries
with variable conditions increases. To test this hypothesis,
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FIG. 5. �Color online� Average defect energies ���E��J for four
sets of BCs on square lattices as a function of system size L. The
straight lines are fits of the form ���E��J�L� to the data. The open
black circles show the “random twist” result of Ref. 65 for com-
parison. The dashed line shows a fit of the form �10� with C=D
=0 to the P/AP data. Some data sets have been shifted vertically for
better distinction.
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we performed additional GEM computations for systems
with aspect ratios R=2 and R=6 with sizes L=4,6 , . . . ,16
�R=2�, respectively, L=3,4 , . . . ,9 �R=6� and 5000 disorder
replica per lattice. In Fig. 6 we present the results for
domain-wall energies as a function of system size L at aspect
ratio R=6. As is apparent, the slopes of the data for bound-
aries probing spin excitations, i.e., P/AP, R/AR, and O /DW
spin boundary conditions, are quite compatible with each
other asymptotically, whereas energies of chiral domain
walls decay considerably slower. If, as it hence appears, there
is independence of BCs as R→	, one expects scaling cor-
rections depending on boundaries to gradually disappear as
more and more elongated systems are being considered. For
the Ising case, it was observed that to good approximation
this limit is attained as54,73

��R� = ��R = 	� + AR/R . �12�

Our estimates of ��R� for the data at aspect ratios R=1, 2,
and 6 for the different sets of boundary conditions are pre-
sented in Fig. 7 together with fits of the form �12� to the data,
also including the alternative scaling of the width ��E�. For
each aspect ratio, corrections at fixed R were taken into ac-
count by omission of points from the small-L side for the fits
of the form �10� instead of including any correction terms
�i.e., we set B=C=D=0�, cf. the fits presented in Fig. 6. In
particular, data points were successively omitted from the
small-L side until a satisfactory quality-of-fit Q was
achieved. We indeed find a clear convergence of the P/AP,
R/AR, and O /DW spin stiffness exponents as more elon-
gated systems are considered, indicating independence of
BCs in this limit. We collect the extrapolated estimates in
Table I, finding them all well compatible within statistical
errors. As our final estimate we cite the weighted mean �s
=−0.329�14� �we do not include the ��E� results in the av-
erage since they are not statistically independent�. The chiral
stiffness exponent �c, on the other hand, seems to be almost
independent of the aspect ratio �at least as far as the scaling
of the difference ��E� is concerned� with an asymptotic value
of �c�R=	�=−0.114�16�, clearly different from the value
found for the spin stiffness, indicating spin-chirality decou-
pling in this model.

C. Domain-wall fractal dimension

On general grounds, the domain walls or droplet surfaces
of the Ising spin glass have been assumed to be meandering
curves with a nontrivial fractal dimension ds �see Refs. 50
and 99�. Measurements for the case of the 2D Ising spin
glass with Gaussian interactions indeed yield a nongeneric
value100 ds�1.27, and for the bimodal distribution quite
similar estimates are found.101–103 A similar value has also
been found in two-dimensional O�n� spin glasses with addi-
tional random �off-diagonal� anisotropy,104 which are ex-
pected to belong to the Ising spin-glass universality class.105

The fractal dimension of domain walls is relevant to the
question of whether the mean-field scenario, which predicts
space-filling domain walls, i.e., ds=d, applies to low
dimensions.21 Consider the link overlap,

ql
AB =

1

N1
�
�i,j�

�Si
A · S j

A��Si
B · S j

B� , �13�

where N1 denotes the number of bonds of the lattice, and the
superscripts A and B stand for two replica of the system, here
for the two BCs for a system with a given realization of the
random bonds. For the Ising case, bonds crossed by the do-
main wall contribute −1 to ql

AB and all the others +1, such
that

�1 − ql
AB�J � L−�d−ds�, �14�

which allows one to determine ds numerically.100 The authors
of Ref. 106 used the same relation for continuous spins �ex-
trapolating from finite temperatures to T=0�. Due to the con-
tinuous nature of the spin response to the perturbation on the
boundary, however, all spins contribute here to the reduction
of ql

AB and it is therefore almost inevitable that �1−ql
AB�J

�L0, implying ds=d. �It is likely that the small difference
d−ds found by the authors of Ref. 106 is an artifact of the
extrapolation from finite temperatures.� Here, we indeed
find, e.g., d−ds=0.0010�14� for the P/AP case and similar
results for the other boundary conditions. Due to the above
argument, however, this should not be seen as evidence for
space-filling domain walls, but rather as an indicator for the
inadequacy of the method.

As discussed above, domain walls in the system consist of
the union of boundaries of rigidly O�n� rotated clusters. To
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FIG. 7. �Color online� Dependence of the stiffness exponents �s

and �c on the aspect ratio R of the systems for different pairs of
BCs. The solid lines show fits of the form �12�.
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FIG. 6. �Color online� Scaling of average defect energies ���E��J

for four sets of BCs at aspect ratio R=6. The straight lines are fits of
the form ���E��J�L� to the data. Data sets have been shifted verti-
cally for better distinction.
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reveal this structure in the ground states identified, firstly one
should get rid of the global symmetry by rigidly O�n� rotat-
ing one configuration such as to maximize the total overlap
q̂AB=��,�q��

ABR��
AB, where R��

AB denotes the corresponding glo-
bal rotation matrix, and

q��
AB =

1

N0
�

i

Si�
A Si�

B �15�

is the matrix of �site� overlaps. This is done by a singular
value decomposition to diagonalize q��

AB, in which case q̂AB is
just the trace of the resulting diagonal q��

AB, see Ref. 86. We
refer to q̂AB as the “optimized” overlap �or projection� in
contrast to the plain scalar overlap qAB=��q��

AB. Once this
global symmetry has been removed, one can attempt to de-
termine local rotation matrices to reveal rigid relative rota-
tions of clusters of spins between the pair of configurations
considered. To this end, we consider a locally averaged over-
lap matrix,

q��
AB�x� = Z�x�−1�

i

w�xi − x�Si�
A Si�

B , �16�

where Z�x�=�iw�xi−x�, and w�xi−x� is a rapidly decaying
weighting function. The optimal local rotation matrix R��

AB�x�
again follows from a singular value decomposition. The av-
eraging is necessary here since the comparison of a single
pair of spins does not allow one to uniquely determine an
O�2� matrix. In particular, one could not decide whether a
proper or an improper rotation is involved. The weighting
function w�xi−x� is chosen exponentially decaying and cut
off after two or three lattice spacings. The following results
are independent of any fine-tuning of this falloff. The snap-
shots of Fig. 2 show the angles and signs of the thus deter-
mined rotation matrices R��

AB�x� �for snapshots of domain
walls induced by a change of BCs, see also Ref. 96�. Domain
boundaries can be defined from R��

AB�x� separately for the
spin and chiral parts: for the latter any bond with different
signs of the determinant of R��

AB�x� at its two ends is crossed
by a chiral domain wall, and for the former any bond with a
change of the rotation angle � of R��

AB�x� by more than a
threshold value �0 is crossed by a spin domain wall. To
determine ds

� for the chiral case, we define a link overlap
analogous to Eq. �13�,

ql,�
AB =

1

N1
�
�i,j�

�det RAB�xi���det RAB�x j�� , �17�

measuring the change in rotation signs along bonds. An
analogous expression for ql,�

AB is used for ds
� of the spin do-

main walls,

ql,�
AB =

1

N1
�
�i,j�

��0
�xi,x j� , �18�

where ��0
�xi ,x j�=−1 if the angle between Si and S j exceeds

�0 and det RAB�xi�=det RAB�x j�, and ��0
�xi ,x j�= +1 other-

wise. Hence, bonds including a sign change of det RAB�x� are
explicitly excluded from the counting to optimally decouple
spin and chiral measurements. Fits of the form �14� are used
to determine the corresponding fractal dimensions.

We consider the same sets of BCs and system sizes used
for the determination of the stiffness exponents above. Fig-
ure 8 shows the L dependence of the spin and chiral link
overlaps ql,�

AB and ql,�
AB, respectively, for the case of P/AP BCs

and L�L systems, revealing clear scaling signals. For the
chiral overlap, a fit of the form �14� to the data yields ds

�

=1.4291�44�. The O /DW chiral boundaries presumably
should show the clearest signal since direct visual inspection
of the configurations reveals that typically a single domain
wall roughly parallel to the variable boundary is excited. For
this case we arrive at ds

�=1.394�12�. The sizable, although
not dramatic, difference for the two choices of BCs shows
that, as expected, still only partially controlled finite-size ef-
fects are present. Unfortunately, aspect-ratio scaling is not a
suitable technique for the determination of ds, at least for the
system sizes accessible here: for the sizes L=3, . . . ,9 of the
R=6 systems, the wall simply has no space to properly “me-
ander” over the length of this couple of lattice spacings, re-
sulting in very strong finite-size effects in L. Finally, as the
third combination of boundaries considered, the O /DW spin
boundary setup yields an extremely weak signal for the chi-
ral domain walls since improperly O�n� rotated domains oc-
cur only scarcely there, and we hence cannot produce a reli-
able estimate. We take the average of the P/AP and O /DW
chiral results with sufficiently strong signals as our final es-
timate, ds

�=1.425�12�. The analysis of spin domain walls
from the overlap ql,�

AB analogous to Eq. �17� is more involved

TABLE I. Spin and chiral stiffness exponents ��R=	� from dif-
ferent sets of BCs as extrapolated via aspect-ratio scaling according
to Eq. �12� for ��E� and the width ��E�.

Boundaries ��E� ��E�

P/AP −0.338�20� −0.348�19�
R/AR −0.329�28� −0.346�13�
O /DW spin −0.308�30� −0.306�26�

O /DW chiral −0.114�16� −0.095�38� 8 16 32
L
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FIG. 8. �Color online� Scaling of the chiral link overlap ql,�
AB of

Eq. �17� and the spin overlap ql,�
AB of Eq. �18� for L�L P/AP sys-

tems. The lines show fits of the functional form �14� to the data.
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due to the general dependence of the results on the cutoff
angle �0: if it is chosen too small, smooth rotations are
counted as parts of domain boundaries, ultimately leading to
space-filling domain walls in the limit �0→0. Choosing it
too large, on the other hand, misses to recognize some of the
cluster boundaries. We find somewhat stable results, how-
ever, in a range 0.5��0�0.75, and estimate ds

�

=1.2379�97� for P/AP and ds
�=1.251�21� for O /DW spin

boundaries. The O /DW chiral conditions yield too weak a
signal for the determination of ds

�, and we again cite the
average ds

�=1.240�21� of the remaining two sets of bound-
aries as our best estimate. Thus to the extent that finite-size
corrections and the cutoff dependence of ds

� are under con-
trol, it appears that spin and chiral domain walls have differ-
ent fractal properties.

V. OVERLAPS

One of the most striking results of the mean-field theory
of the SK model is the occurrence of a multitude of pure
states, resulting in a nontrivial distribution of the �thermally
and disorder� averaged overlap parameter.45 Consequently,
estimates of the form of the overlap distribution have been
regularly considered as crucial benchmarks of the extent to
which replica symmetry breaking occurs in finite-
dimensional spin glasses.5 In recent years it has become
clear, however, that great care has to be taken when drawing
conclusions from measurements on finite systems for the
structure of pure states in spin glasses.21,51,107,108 According
to basic principles of statistical mechanics,109 a thermody-
namic state should be defined as a limiting probability mea-
sure from a series of systems of increasing size, where a
specific state is selected by an accompanying series of BCs.
The resulting state is then identified by the values in this
limit �if they exist� of all possible correlation functions in a
central volume of the system, far away from the perturbing
presence of the boundaries. If such a state cannot be decom-
posed into other thermodynamic states, i.e., it is mixed, it is
termed pure. While this is rather clear in homogeneous sys-
tems such as ferromagnets, unfortunately, it is not known
how a pure state should be explicitly constructed in spin-
glass systems.21 In particular, there is “chaotic size depen-
dence” in such a sequence of system sizes resulting in oscil-
lating and nonconvergent correlation functions. It is also
unknown how a convergent subsequence could be selected
by coupling-independent BCs. It is clear, then, that consider-
ing the overlap distribution in whole, finite systems is not an
appropriate way to detect the presence of a multitude of pure
states.110 In particular, the presence of domain walls separat-
ing patches of pure state configurations in finite systems
might lead to a nontrivial overlap distribution even if only a
single class of pure states related by a global O�n� transfor-
mation was to exist. If, on the other hand, spins in a volume
far away from the boundaries always converge to the same
configuration �up to a common rotation� as L→	, indepen-
dent of BCs, a multitude of nonequivalent and observable
pure states would appear to be ruled out.

An asymptotic independence from BCs of spin configura-
tions in central windows can be detected either in �window�

overlap distributions or in the behavior of correlation func-
tions. These approaches are essentially equivalent.51 To see
this, consider two spins Si and Sj inside a window W con-
taining NW=w2 spins �for simplicity we consider Ising spins
first�. The average squared difference in the two-point
functions between two systems with different BCs labeled A
and B,

� =
1

NW
2 �

i,j�W

���Si
ASj

A�T − �Si
BSj

B�T�2�J, �19�

by construction scales to zero at fixed window size w if and
only if the two-point functions for all window spins agree for
almost-every disorder configuration �here �·�T denotes a ther-
mal and �·�J a disorder average�. It is then easy to see that in
terms of the optimized overlap q̂AB of window spins �which
for the Ising case n=1 is just �qAB�� this is equivalently writ-
ten as

� = ��q̂AA�2 + �q̂BB�2 − 2�q̂AB�2�T,J. �20�

For the case of our XY model with a unique state at T=0, up
to a global O�n� rotation �see Sec. III B above�, q̂AA and q̂BB

are of course always unity. Higher order �even� correlation
functions lead to similar expressions with higher moments of
q̂AB, such that in the most general context, the vanishing of
the difference �PAB�q̂�= PAA�q̂�+ PBB�q̂�−2PAB�q̂� of over-
lap distribution functions is equivalent to the invariance of
window correlation functions under a change of BCs. For the
present case of nondegenerate ground states, this vanishing is
attained only for the trivial form PAB�q�=��q̂−1�, i.e., if and
only if the window configurations are completely unchanged
for almost every disorder configuration. A calculation along
the same lines establishes the analogous relation between
correlation functions and overlaps for the case of continuous
spins.

We did not attempt to sample “all” BCs, but used the
P/AP, R/AR, and O /DW boundaries already considered for
the defect-energy calculations. If the size w of the overlap
window comes too close to the system size L, a crossover to
the behavior of whole-system overlaps is seen, such that one
strives to guarantee w�L. For too small windows, on the
other hand, discretization or finite-size effects appear, and
there is a certain probability that the two window configura-
tions can be made to �almost� perfectly overlap by an O�n�
rotation although they are affected by the influence of the
changed boundaries—down to the extreme case of w=1
where each pair of configurations has q̂AB=1. Thus the in-
tended behavior should appear for window sizes 1�w�L.
As we shall show below, with available system sizes, these
restrictions are best fulfilled for about 4�w�8, but finite-
size effects are still clearly visible due to the maximum L
�28 that we can reach with the GEM. In Fig. 9 we present
the sampled distribution function of window overlaps q̂AB for
the P/AP combination of BCs with w=4, showing a clear
tendency of statistical weight to accumulate at q̂AB=1 as the
system size L is increased, suggesting a convergence to the
trivial form PAB�q�=��q̂−1� in the limit L→	. The overlap
distributions for the remaining pairs of BCs show a qualita-
tively similar behavior. For a more systematic study of this
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apparent convergence, we consider the total probability
pAB�L ,w� for the occurrence of an overlap q̂AB smaller than a
threshold value q̂0, measuring the distribution weight away
from q̂AB=1. To the extent to which the configurational
changes induced by a change of BCs take the form of do-
main walls, this just measures the probability of the window
being crossed by one of them. As discussed in Sec. IV C,
such domain walls are fractal curves occupying a volume
�Lds, such that a fraction of the lattice proportional to
L−�d−ds� will be touched by a domain wall �whether the rel-
evant fractal dimension would rather be connected with spin
or chiral defects will have to be decided post factum, see the
discussion below�. Since the relevant length scale in fact is
L /w �remember that fractals are scale invariant�, one expects
an asymptotic scaling107

pAB�L,w� = Q0�L/w�−�d−ds�. �21�

Figure 10 shows the scaling of the crossing probability
pAB�L ,w� for q̂0=0.9 and the P/AP pair of BCs. We addition-
ally considered cutoffs q̂0=0.95 and 0.99, changing the pref-
actor Q0 of Eq. �21� and slightly modifying corrections, but
yielding the same leading �L /w�−�d−ds� behavior. There is a
clear signal of scaling of pAB�L ,w� to zero as the system size
L is increased at fixed window size w. The expected collapse
of data for different window sizes, however, only appears at
w�8, at the edge of the window sizes that can be reasonably
considered with the system sizes at hand. From fits to the
scaling form �21� we find exponent estimates ds=1.442�29�,
1.444�16�, and 1.472�21� for window sizes w=4, 6, and 8,
respectively. These are not only consistent with each other,
but also compatible with the estimate ds

�=1.425�12� found
above for the fractal dimension of chiral domain walls. The
remaining combinations of BCs yield rather similar results,
with somewhat more pronounced finite-size corrections for
the L�20 systems considered there �in contrast to the
aspect-ratio scaling of the domain-wall energies, where P/AP
boundaries entailed the stronger corrections�. In particular,
we find ds=1.404�17� from R/AR boundaries �w=6�, ds
=1.491�28� from O/DW spin BCs �w=4�, and ds
=1.489�59� for the O/DW chiral combination �w=6�. It thus
appears that the relevant domain walls seen in the window

overlaps are of the chiral type. In total, clear signals of a
scaling of the weight away from q̂AB=1 to zero are seen in
all cases, indicating a “deflection to infinity”21 of domain
walls in the center of sufficiently large samples. The esti-
mates for the fractal dimension seem to preclude an excita-
tion of space-filling domain walls �i.e., ds=2� as predicted by
a many-state picture at least from the coupling-independent
and symmetric BCs considered. This is in agreement with the
findings for the 2D Ising spin glass of Refs. 51 and 107.

VI. MAGNETIC PROPERTIES

A. Internal fields

It is straightforwardly seen that a necessary condition for
the Hamiltonian �1� to be in a metastable state is that each
spin is parallel to its local internal field

hi
l =

1

qi
�

j

JijS j , �22�

which for convenience has been normalized to represent the
field per link by dividing by the local coordination number
qi, accounting for the difference in connectivity between
spins along open boundaries and in the bulk. An iterative
alignment of spin orientations along the internal field direc-
tions indeed drives the system towards a metastable �but not
a ground� state, and the corresponding minimization tech-
nique is referred to as the Walker-Walstedt or spin-quench
algorithm.77 The local strength of internal fields is closely
linked to the presence of frustration in the system, with a
weak internal field indicating a local uncertainty of the sys-
tem with respect to choosing a given spin’s orientation such
as to minimize the total energy. We indeed find a strong
inverse correlation between the size �hi

l� of the internal fields
in the ground state and the density of frustrated plaquettes of
the system. This is illustrated for the ground state of an ex-
ample disorder configuration of 28�28 spins in Fig. 11. It is
clear that in terms of finding a ground state, optimal spin
orientations in regions of low frustration �and consequently
large internal fields� are rather easily determined, while it is
much harder to optimize highly frustrated areas. This con-
nection was exploited in the improved spin-quench method
suggested in Ref. 32. One then also expects a certain corre-
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FIG. 10. �Color online� Scaling of the probability pAB�L ,w� of
an overlap q̂AB�0.9 for the P/AP pair of BCs as a function of L /w.
The lines show fits of the form �21� at fixed w to the data.
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FIG. 9. �Color online� Sampled distribution of optimized over-
laps q̂AB in central windows of size w=4 for a change of BCs from
periodic to antiperiodic. As the system size is increased, the distri-
bution accumulates all its weight close to q̂AB=1.
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lation of the boundaries of rigid clusters discussed above in
Sec. III and the occurrence of a high density of frustrated
plaquettes.

Speculations on the occurrence of a certain proportion of
sites with almost or exactly vanishing internal fields played
some role in early models of the specific heat in spin glasses,
see Ref. 77 and references therein. For the infinite-range
case, it was subsequently established that �hi

l��h0
l �0, such

that �almost� free spins do not occur.111 For the short-range
Heisenberg model, a similar exact bound was reported in
Refs. 112 and 113. For the bimodal Ising spin glass, on the
other hand, a multitude of flippable spins exists in each
ground state.114 For the intermediate XY case, however, to
our knowledge no exact results are available. Figure 12
shows the distribution of internal fields �hl� for 28�28 sys-
tems. Independent of BCs, no spins with fields �hl��0.6
=h0

l occur. Smaller systems have slightly larger gaps h0
l , but

the size dependence is very weak such that it is clear that a
finite h0

l survives in the thermodynamic limit. The absence of
almost free spins in the ground state clearly illustrates the
fact that there are no localized low-energy excitations and,
instead, the lowest excitations are the extended defects cor-
responding to domain walls or O�n� rotations of rigid clus-
ters, as discussed in Secs. III and IV. The distributions P��hl��
for the ground state show a characteristic behavior with the
bulk of spins having 1.25� �hi

l��1.75 indicating strong frus-
tration but a certain number of almost fully satisfied spins
leading to an extra peak close to �hi

l��2 associated to regions
free of frustrated plaquettes. There are only small differences
between the systems with open and periodic BCs, most no-
ticeably a relative enlargement of this peak of unfrustrated
spins for the open boundaries resulting from the relatively
lower frustration of the extra boundary spins. For compari-
son, we also show the corresponding distribution for states
found from the Walker-Walstedt zero-temperature quench,

which asymptotically should result in an even sampling of
all metastable states. This leads to a rather different distribu-
tion of internal fields where much less of the inherent frus-
tration has been relieved. These curves for the finite-range
model are markedly different from the distribution �again
over all metastable states� of the infinite-range O�2� SK
model111 shown for comparison which, due to the lack of
local fluctuations in this infinite-dimensional model, is much
more symmetric and more evenly frustrated.

B. Magnetic phase diagram

For small concentrations x and/or rather weak impurity
bonds, one might expect the system to exhibit some rather
extended short-range order,32 or perhaps even long-range
order,35 and from example calculations we indeed find
clearly nonzero magnetizations for this region, whereas
strongly disordered states of spin-glass signature appear once
a larger number of strong impurity bonds is being intro-
duced. Analytical calculations regarding the question of or-
der and canting induced by impurity bonds have only been
possible for isolated defects or using the mean-field type co-
herent potential approximation �CPA� of unclear precision
for the case at hand.29–31 As a preliminary exploration of the
zero-temperature phase diagram, we consider the modulus of
the magnetization, ��m��J, where m= ��iSi� /N0. Figure 13
shows a contour plot of ��m��J as a function of x and 
 �cf.
Eq. �4�� as found from GEM ground-state computations for
systems of 16�16 spins and open BCs. Numerical calcula-
tions were actually performed at the grid of 30 points indi-
cated by the tick marks in the plot, and the contours were
produced from a third order polynomial interpolation of the
results. The bold black line indicates the locus of the curve
��m��J=0.5 which could be used as a possible definition of a
finite-size approximation of the phase transition line, ap-
proaching the true transition line as L→	. The prediction of
the CPA, namely31
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FIG. 12. �Color online� Average distribution of internal fields
�hl�. The “GEM” curves represent ground states of 28�28 systems
with open-open and open-periodic BCs. The “quench” data corre-
spond to the average over a broad range of metastable states as
found from the Walker-Walstedt algorithm �Ref. 77�. The curve
labeled “SK model” shows the corresponding distribution in the
O�2� SK model �Ref. 111�.

FIG. 11. �Color online� Spatial distribution of the internal field
per link in the ground state of an example 28�28 disorder configu-
ration with open-periodic BCs. There is a clear inverse correlation
with the density of frustrated plaquettes �small white squares�.
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xc�
� =
1

2

�1 − �
�2

1 + 

, �23�

is indicated by the bold white line. In the limit 
→0 of a
diluted and unfrustrated system, order must disappear at the
�bond� percolation threshold xc�
=0�=0.5 which is �by
chance� already very well-reproduced by the chosen defini-
tion ��m��J=0.5 at the system size displayed. Also, xc�0�
=1 /2 for the CPA form �23�. There is no agreement in the
literature about the general form of xc�
� as x→0, i.e., in the
experimentally most relevant regime of small dilution. Ac-
cording to Eq. �23�, the CPA predicts a finite intercept 
c
=1 for x=0, and this claim was supported by the interpreta-
tion of the average magnetization found from a local spin-
quench computation in Ref. 32 �at the same time, however,
further results from the same study seemed to indicate the
absence of long-range order for the whole phase diagram�.
An RG calculation for the nonlinear � model,33 on the other
hand, appeared to indicate 
c→	 as x→0. The results of
Fig. 13 certainly rather suggest that 
c�1 for x→0, but this
impression might be distorted by finite-size effects. The
question of long-range order is here rather subtle,31 and it
certainly cannot be excluded from the data shown that the
indicated transition line is related to a crossover rather than a
phase transition. In any case, this picture, of course, needs to
change again at finite temperatures, where true long-range
order is impossible due to the continuous symmetry of the
system. A more thorough, finite-size scaling analysis of this
question, together with an investigation into the nature of the
apparently ordered phase �i.e., whether it is accompanied by
transverse spin-glass order32�, is left as an interesting future
application of the GEM technique.

VII. CONCLUSIONS

We have shown that a recently developed specially tai-
lored heuristic optimization technique combining exact
ground state computations for embedded Ising variables with
a genetic algorithm allows for a thorough investigation of the
ground state of the planar EA spin glass in two dimensions,
contributing to a resolution of a number of long-standing
issues for this system.

The main result consists of a careful determination of the
spin and chiral stiffness exponents of the model with bimo-
dal coupling distribution, which characterize its critical be-
havior and directly relate to the question of a possible spin-
chirality decoupling in this system. In principle, a stiffness
exponent related to domain walls can be extracted from scal-
ing corrections to the finite-size behavior of the ground-state
energy, but the precision of the estimate resulting from this
method is not satisfactory. Instead, we investigated the prop-
erties of domain-wall defects directly induced by a suitable
change of boundary conditions. In response to doubts regard-
ing the suitability of the conventionally considered combina-
tion of periodic and antiperiodic boundary conditions result-
ing in an effective measurement of differences of defect
energies,65 we explicitly excite domain-wall defects of the
spin and chiral type relative to a system with free boundaries
by applying special “domain-wall boundary conditions.”

Corrections to scaling for these as well as for the additionally
considered periodic-antiperiodic and random-antirandom
boundaries are found to be large and their resolution, from
explicitly including correction terms in fits to the defect en-
ergies, is not fully satisfactory given the accessible system
sizes. However, application of the aspect-ratio scaling
technique73 allows for good control over the boundary-
dependent corrections, leading to a consistent estimate �s=
−0.329�14� of the spin stiffness exponent for the different
sets of boundary conditions used. This value is considerably
smaller in modulus than the results of previous authors, quot-
ing values of �s=−1.0,64 −0.9,94 −0.8,95 −0.78,66 and
−0.37�2�,65 respectively. The spread of these previous results
nicely illustrates the magnitude of present finite-size correc-
tions as well as the hardness of computing true ground states
for sufficiently large systems. The fact that in the present
work, consistency between estimates of the stiffness expo-
nent from different sets of boundary conditions with correc-
tion amplitudes of opposite signs could be achieved, makes it
appear plausible that finally scaling corrections are under
control to an acceptable degree of precision. Concerning the
claim put forward in Ref. 65 that the P/AP combination of
boundary conditions cannot be used to estimate the spin stiff-
ness exponent, the results of the aspect-ratio scaling show
that the assumed trapping of domain walls in periodic
systems65 only affects scaling corrections, but does not alter
the asymptotic stiffness. This value of �s is remarkably close,
but apparently not identical to the estimate �s=−0.287�4�
found for the two-dimensional Ising spin glass with Gauss-
ian coupling distribution.54 Also, scaling corrections to the
ground state energy are found to be very close to the Gauss-
ian Ising model, but rather different from the bimodal Ising
spin glass. Chiral boundaries, on the other hand, lead to a
clearly different exponent �c=−0.114�16�, which is again re-
markably smaller in modulus than previous estimates of �c
=−0.6,115 −0.38,66,95 and −0.37�1�,65 respectively. Conse-
quently, it appears that spin and chiral degrees-of-freedom
order with different exponents in this system although, of
course, a study for finite system sizes can never guarantee to
probe the true asymptotic behavior. Naively, one might ex-
pect that the Ising-like chiral variables should lead to the
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FIG. 13. Contour plot of the average ground-state magnetization
��m��J for 16�16 systems with open BCs as a function of x and 
.
Darker shades indicate larger magnetizations, and contours are
separated by �m=0.1. The bold black line denotes the locus of the
curve ��m��J=0.5, and the bold white line corresponds to the CPA
prediction of Eq. �23�.
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value �c=0 of the bimodal Ising spin glass.55 It should be
noted, however, that the chiral variables interact with an ef-
fective long-range Coulombic interaction,58 possibly leading
to a shift in universality class. On the other hand, for the
recently established spin-chirality decoupling in the periodi-
cally frustrated XY model,61,62 the chiral transition appears to
show Onsager exponents, but this behavior is only seen for
huge lattice sizes of L�103, with wildly different behavior
in the crossover region.62 For our data, since for a �c very
close to zero it becomes very hard numerically to distinguish
the leading scaling from subleading corrections, we cannot
definitely exclude the possibility of �c=0. In fact, including a
finite asymptotic value �E0 in the form �10�, fits consistent
with �c=0 can be achieved as well. In the context of the
observed spin-chirality decoupling, it is therefore quite inter-
esting that we find a �s value so close to that of the 2D Ising
spin glass with Gaussian interactions.

We find that the structure of metastable states of the
model can be understood in terms of metastates of clusters of
rigidly locked spins, which undergo common relative O�n�
rotations between different metastable states. To each meta-
stable state belongs a spectrum of continuous spin-wave ex-
citations leaving the associated energy minimum. These will
be considered in a future investigation. Low-energy excita-
tions within the manifold of metastable states, on the other
hand, are extended objects, corresponding to O�n� rotations
of one or several rigid clusters. Almost free spins corre-
sponding to local excitations do not occur. Many such meta-
stable configurations are found closely above the ground
state, leading to a quasicontinuous spectrum in the thermo-
dynamic limit. The ground states themselves, however, are
found to be unique up to a global O�n� transformation, im-
plying a critical exponent �=0 of the ground-state correla-
tion function. Together with the estimates for �s and �c, this
gives a rather complete characterization of the T=0 critical
point of the model.

We investigated the nature of elementary excitations in-
duced by a change of boundary conditions by analyzing the
locally averaged optimal rotation matrices between ground-
state configurations. Chiral domain walls are by definition
sharply localized. We find them to be fractal curves, and
from the scaling of the corresponding link overlaps we esti-
mate a fractal dimension ds

�=1.425�12�. The definition of
spin domain walls depends on a somewhat arbitrary cutoff
angle, but we find the fractal dimension ds

�=1.240�21� to be
independent of the cutoff within some reasonable range. Re-
cently, evidence was presented for the hypothesis that do-
main walls in the Ising spin glass are special fractal curves
described by “stochastic Loewner evolution” �SLE�.116,117

Comparing the numerical results with conformal weights of

the Kac table, the authors of Ref. 116 conjecture a relation
ds=1+3 /4�3+��. This we find fulfilled within statistical er-
rors for ds

�, but not for the chiral exponent ds
� where one

might have rather expected it to hold. In any case, from the
excitation via a change of boundary conditions, we do not
find space-filling domain walls �ds=2� one necessarily ex-
pects for a model with many thermodynamic pure states.21

This appears to be corroborated by an explicit investigation
of the distribution of overlaps in central windows far away
from the boundaries, which, for the system sizes accessible
here, appears to converge to a trivial form PAB�q̂�=��q̂−1�.
This shows that the states defined by the considered set of
boundary conditions always converge to the same class of
thermodynamic pure states related by a global O�n� rotation,
and we do not find evidence for a multitude of pure states.
Naturally, however, consideration of different types of
boundary conditions might yield different results. The rate of
this convergence is again related to a domain-wall fractal
dimension, with a value compatible with ds

� as determined
directly.

A multitude of extensions of the present work comes to
mind. Besides the mentioned investigation of spin-wave ex-
citations complementing the information on metastable states
presented here, certainly the magnetic phase diagram dis-
cussed in Sec. VI, which is relevant to a number of experi-
mentally realized systems, deserves a more extensive inves-
tigation. Concerning the structure of the ground and excited
states in terms of clusters of rigid spins, a more systematic
analysis of the morphology along the lines of Refs. 88 and
118 appears promising. Clearly, investigations of Gaussian
bond distributions and of the Heisenberg case would be
highly interesting enterprises. Above all, however, the impor-
tant question of spin-chirality decoupling in three-
dimensional spin glasses could be tackled with a suitable
generalization of the GEM approach employed here, replac-
ing the embedded matching component inside the genetic
algorithm by a technique applicable to three-dimensional
systems.
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